September 30, 2016

2016-2017 Soil Fertility Workshops

A&L Great Lakes Laboratories will be presenting our Soil Fertility Workshops again this winter. While the presentation materials evolve to include current research, the focus on fundamental soil fertility concepts remains at the core of the workshops. The workshops are designed with a focus on how nutrients interact with the soil and function within the plant, and how these relations impact nutrient management decisions. The program uses fundamental text references and university research to introduce concepts and then make them applicable to modern production agriculture.

The workshops run from 8 am to 4 pm local time (except West Lafayette, IN which runs from 8:30 am to 4:30 pm). For CCA’s, the workshops will provide 7.0 CEU’s, consisting of 4.5 hours in Nutrient Management, 2.0 hours in Soil and Water Management, and 0.5 hours in Crop Management. Please visit our website for more information or to register for one of these workshops today!

Soil Fertility Workshop Registration

November 29, 2016 – Fort Wayne, IN

December 1, 2016 – Grand Rapids, MI

January 4,2017 – Piqua, OH

January 5, 2017 – Effingham, IL

February 7, 2017 - West Lafayette, IN

February 8, 2017 - Rockford, IL

February 14, 2017 - Perrysburg, OH

February 15, 2017 - Frankenmuth, MI

February 21, 2017 - Fort Wayne, IN

February 22, 2017 - Lansing, MI

September 30, 2016

The Thrill of Competition

With the Summer Olympics ending in Rio de Janeiro, Brazil, A&L Great Lakes Laboratories’ Olympic committee decided to hold its own first annual Lab Olympics.  Just as in Rio, the A&L Great Lakes Laboratories Lab Olympics was awash with records and landmark moments.


April Matha participating in the filter paper challenge

April Matha participating in the filter paper challenge.


The opening ceremonies consisted of a short presentation of the A&L Great Lakes Laboratories, Inc. core values.  The company provided a pulled pork picnic lunch along with a slushy machine and soft serve ice cream cone machine to fuel the athletes prior to competition.  We even had super soakers on hand to keep people cool.  During the picnic, corn hole and hillbilly golf games were set up in the company parking lot. 


Ag Lab Manager Marty Snodgrass and Veronica Kwasny compete in a friendly game of cornhole

Ag Lab Manager Marty Snodgrass and Veronica Kwasny compete in a friendly game of cornhole.


For the Olympic competition, several events were set up to test the skills of our laboratory athletes (stamping, pipetting, filter papering etc).  Employees were split into teams and a series of events in relay style was held.  After an impressive display of laboratory athleticism, a winning team was crowned and the Gold medals were awarded to:

  • Greg Neyman
  • David Henry
  • Veronica Kwasny
  • Stephanie Sanchez
  • Russell Fulk
  • Gleeann VanPetten

The winning team being squirted with Super Soakers during the medals ceremony
The winning team being squirted with Super Soakers during the medals ceremony
September 30, 2016

The Basics of Lime Testing

The majority of our soils in the Great Lakes region require regular liming in order to maintain pH levels that are within the appropriate range to maximize crop growth and productivity. The quality and effectiveness of a liming material can vary tremendously depending on the source, composition, and physical properties of the material, so having a reliable lime analysis is critical to ensure that the proper type and quantity of liming material is used to get the desired effect.

Agricultural lime quality is usually measured by three characteristics:

  1. Purity - commonly expressed as calcium carbonate equivalent (CCE)
  1. Particle size – finer particles react more quickly to raise soil pH
  1. Moisture – increases weight of the material without increasing effectiveness, essentially “diluting” the material

A number of materials can be used to increase the pH of the soil, but historically the most common material is ground limestone, commonly referred to as ag lime. Ag lime is finely ground rock containing high levels of calcium carbonate (CaCO3) and magnesium carbonate (MgCO3). It is actually the carbonate (CO3-) in lime that reacts with acidity (hydrogen) to increase soil pH.

Calcium and magnesium in lime, in addition to being essential plant nutrients, exchange with hydrogen (H+) held on cation exchange sites, moving H+ into soil solution where it can be neutralized by carbonate.

Particle size determines how quickly lime will dissolve and react in the soil. Generally, 40-50% of the particles in a good quality liming material will pass through a 60-mesh sieve. States in this region have different lime quality systems, with state-specific terminology and measurements.

A & L Great Lakes offers a Fact Sheet, entitled Adjusting Lime Rates, which provides details on how to make adjustments. A & L Great Lakes has also developed a spreadsheet which outlines various states’ systems and helps adjust rates for a particular liming material. These useful tools are available from our website at

August 31, 2016

Shipping Solutions

We offer United Parcel Service (UPS) Return Shipping (RS) labels for your shipping convenience. The RS program offers you convenience and allows our customers to take advantage of our significant shipping discounts.

The cost for shipping samples with the RS program is based on the weight of the package and distance it’s shipped. This results in more accurate shipping rates and, coupled with the significant discounts offered, is a very economical option for customers to ship samples to the lab.  RS shipping charges will be applied to your A&L Great Lakes account and are not applied until after the package is received at the lab. You only pay for what you use, and all available discounts are passed along directly to you. Rather than offering promotional shipping programs we provide cost effective, streamlined, fair, and easy shipping options.

The RS program also allows packages to be tracked through the UPS Quantum View® system. This system is set up to provide the client with an email notification when a package arrives at the laboratory, providing a timely notice when your samples arrive and reducing some of the uncertainty associated with sample shipment. In addition, the Quantum View® system also notifies the client if there is any deviation in the normal processing of the shipment, alerting you in advance of any possible delays. These features help to keep you better informed about the status of your samples.

 RS labels can be ordered via our online store or by contacting the laboratory at 260-483-4759. When labels are ordered, you will be asked what type and number of samples will be in a typical package, as well as its approximate weight . This information will be used to generate labels that are appropriate for the package(s) to be shipped. The labels also contain all of the necessary client information for the package to be shipped, so no additional information needs to be entered on the label.

To ship samples to the laboratory, simply affix the RS label to the package to be shipped and deliver the package to a UPS shipping location or give to a UPS driver delivering packages to your location. Package pickup may also be available for an additional fee if you don’t already have daily UPS pickup. Contact your local UPS representative for more information on package pickup.

If you have any questions, please contact us at 260-483-4759, or by email at

August 31, 2016

Nutrient Removal in Grain

A good understanding of the amount of plant nutrients removed from the soil in the harvested portion of a crop is an important aspect of nutrient management. While a number of sources provide estimates of the amount of plant nutrients removed with a harvested crop, more precise nutrient removal values can be obtained by analyzing the concentration of nutrients in the crop. This can be done by submitting grain samples for a Crop Nutrient Removal Analysis.

There are several factors that can cause the actual concentration of nutrients in a given crop to vary from the average, including weather conditions, plant genetics, management practices, and soil properties

Nutrient removal analysis is similar to other plant tissue analyses in which the material is dried, ground and digested so that the concentration of various nutrients such as nitrogen, phosphorus, potassium, sulfur, calcium, magnesium, and various micronutrients can be determined for the sample. For grain samples, the results are then calculated and expressed as pounds per bushel based on a standard test weight and moisture content for a given crop. As with any other analysis, proper sample collection is crucial. For grain crops, collect a sample of grain that best represents the entire area, and submit 1 to 2 cups to the lab for analysis. Results will be presented on a pound per bushel and pounds per acre basis. The crop removal data can be reported based on the actual crop yield for the sampled area if the yield is provided for the submitted sample.

The utility of this type of analysis is not limited to grain samples. This data can be very useful for determining nutrient removal for other commodities such as fruits, vegetables, hay, straw, and silage. Since harvesting these crops often removes greater amounts of vegetative material and the concentration of nutrients in vegetative parts of a plant can be quite variable, nutrient removal values can differ considerably. To analyze for nutrient removal in these crops, submit 1 to 2 pounds of material for analysis.

Although considerable differences may exist between the results of a specific analysis and the reference values, this data is not intended to assess the fertility status of a crop or diagnose nutrient deficiencies. While nutrient removal data can be a valuable tool for managing soil fertility, it is only one piece of the puzzle. A good routine soil sampling plan remains the basis for a sound soil fertility program.


August 31, 2016

Fall Management of Alfalfa

Fall is a critical time of year to manage alfalfa to ensure maximum productivity and stand longevity. Unlike annual crops such as corn and soybean, fall is when the alfalfa plant begins to store additional sugar, protein, and nutrient reserves in the crown and root system, which will provide protection from the cold winter weather and facilitate vigorous growth next spring. In a year such as this one, where hot and dry weather this summer was especially stressful to the plant, it is crucial to allow the alfalfa crop to prepare for the cold months ahead.

One of the most important management practices involves timely harvest. Final cuttings should be made early enough in the fall to allow the crop to regrow adequately and replenish necessary reserves before a killing frost, and should generally be completed by early to mid-September, depending on your location and local climate. More guidance on the exact timing can be obtained from state Extension publications or your local Extension agent. This is also a good time of year to assess the overall health and quality of an alfalfa crop, including evaluating stand density and root and crown health, allowing you to address any problems before they become serious.

Also critical for maintaining a successful alfalfa stand is managing the fertility of the crop. Fall is a good time of year to make fertilizer and lime applications. Low levels of nutrients, particularly potassium (K), can also lead to reduced stand health and vigor. In addition to the other essential functions of K in the plant, K plays an important role in the plants’ ability to resist subfreezing temperatures, and low levels of K in the plant can lead to increased winterkill if conditions are favorable. In addition, maintaining a proper pH with liming is critical for a number of reasons, including maximizing the availability of other nutrients and ensuring successful nitrogen fixation. Since lime requires adequate soil moisture and time in order to affect soil pH, making lime applications in the fall allows the liming material time to react and can have a greater effect on next year’s crop.

Careful management of your alfalfa crop this fall can mean a stronger, more vigorous crop next year. Therefore, taking some time to care for your alfalfa crop today can mean better results tomorrow and beyond.

July 27, 2016

Spring Cleaning

What is the most effective and dramatic way to clean up an area?  Renovate, replace and redecorate.  Keeping our instrumentation and computer equipment on the cutting edge has always been a priority at A & L Great Lakes Laboratories.  As a result, much of the décor in our employee breakroom and conference room have existed since we moved to this location in 1987.

However, the time had now arrived to enhance areas for our employees and customers.  We began by emptying the employee breakroom of all content, including cabinets and flooring.  With new furnishings and a fresh coat of paint, the breakroom has taken on a new life with additional seating and a refreshing space for employees to take a break or enjoy their lunch.  Our employees at A & L Great Lakes are vital to our operations and accordingly deserve this atmosphere.

A&L Great Lakes breakroom


Next we focused on the lobby and conference room to elevate our customer experience.  Furnishings, flooring and paint also rejuvenated the lobby area while providing additional workspace and a better supply display.  In our conference room, technology was a major consideration for presentations and audio communication for business interactions.  A comfortable space with ample seating represents our company’s commitment to being easy to work with. 

A&L Great Lakes Conference Room

We invite you to check these spaces out the next time you are at the laboratory.  The completed project has been rewarding as many employees were not afraid to get their hands dirty and assisted with demolition and painting.  Great pride and ownership has been taken of these areas and will serve our employees and guests well for many years to come.

July 27, 2016

Manure Analysis for CNMP’s

Land application of livestock manure can be a very cost-effective source of nutrients for crop producers as well as an efficient means of waste disposal for livestock producers. However, to get the most value from a manure application and minimize any potential off-site environmental impacts, it is important to follow the 4R’s of nutrient stewardship. This means using the right source, the right rate, at the right time, with the right placement. The development of a Comprehensive Nutrient Management Plan (CNMP) with the Natural Resources Conservation Service (NRCS) can be a very useful tool for livestock producers looking to responsibly land apply their manure.

The basic requirements of a CNMP are described in the NRCS Conservation Practice Standard 590. However, it is always best to check with your local NRCS office to determine any specific requirements for your area. Two of the key elements in developing a CNMP require laboratory analysis. First, the fields where the manure is to be applied must have current soil test data that is no older than three years. This will ensure that the nutrients are not being over applied. The second laboratory analysis is a nutrient analysis of the manure. This will ensure that the correct rate is being applied.

Laboratory analysis of manure for CNMP’s must include, at a minimum, total nitrogen, ammonium nitrogen, total phosphorus, and total potassium. The benefit in using an analysis package that include ammonium nitrogen is that the estimation of first year available nitrogen is much more accurate as compared to a calculated value based on total nitrogen alone. The analysis package available at A&L Great Lakes Laboratories that provides the minimum requirement for CNMP’s is the M4. For a complete listing of manure analysis packages, please visit our website and navigate to manure analysis under services.

July 27, 2016

Sampling for SCN

Interest has been steadily growing in soil sampling for Soybean Cyst Nematode (SCN), and with good reason. SCN continues to be the leading yield loss pathogen in U.S. soybean production. The impacts of SCN continue to grow as the pest continues to spread throughout the soybean production acres of the U.S. The map below shows how SCN has spread from a small isolated area along the Mississippi River in 1957 to the last survey in 2014. It is particularly concerning how quickly the area affected has expanded since 2001.

Map depicting the spread of Soybean Cyst Nematode

The spread of SCN through the Great Lakes region, increased focus on high yield soybeans, the potential link of Sudden Death Syndrome to plants experiencing SCN feeding, and new products on the market showing some level of SCN control has increased the interest in sampling for SCN.

Sampling for SCN can take two forms: a diagnostic approach to identify a crop issue, or a proactive management approach looking at whole field SCN levels to determine future planned management activities. Each of the approaches have different sampling procedures and interpretations, but utilize the same laboratory procedures. A N-CYST test from A&L Great Lakes Laboratories provides a count of both SCN eggs and adult SCN cysts which are used to identify treatment and management thresholds.

A diagnostic approach is used when a yellow and stunted area of a soybean field is suspected to have elevated SCN populations leading to the visual symptoms. In this case, soil sampling for SCN will be targeted to verify the presence and amount of SCN in the affected area. While visual inspection of the roots can note the presence of SCN, it does not quantify the population. SCN may be present, but at populations below the threshold at which injury should occur. To properly sample for SCN, 8 or more soil sample cores should be taken 6 to 8 inches deep in the affected area. If the field has a history of elevated SCN levels it may be advisable to take a sample from a portion of the field not showing visual symptoms to collect comparative data. Place the soil cores in a clean plastic bucket. Once all of the cores are collected, thoroughly mix the sample and place two cups of soil into a sealed and labeled soil sample bag or plastic bag. The samples should be sealed to avoid moisture loss and protected from extreme temperatures; do not freeze or refrigerate, or leave in the dash of the truck on a summer day. A cooler can be very helpful for sample storage during collection. If the samples are handled in such a way that lead to cyst death, the adult counts will be negatively impacted. Ship or deliver to the lab a quickly as possible.

As a tool for proactive management of SCN, whole field samples can be collected to identify average SCN populations across a field or region of a field. This method is helpful in identifying fields that need additional management to address SCN, but populations can be underestimated when sampling a large area, because small areas of very high SCN populations can be diluted with unaffected areas. Whole field sampling for SCN mirrors traditional whole field composite soil fertility samples. Take samples late in the growing season after flower through harvest. Collect a minimum of 10 to 20 soil cores to a depth of 6 to 8 inches, while walking in a zig-zag pattern across the field, and place the soil cores in a clean plastic bucket. Once all of the cores are collected, thoroughly mix the sample and place two cups of soil into a sealed and labeled plastic bag. Again protect the samples from drying out and from extreme temperatures while shipping the samples to the laboratory as quickly as possible.

For any additional questions regarding SCN sampling, feel free to contact your A&L Great Lakes Laboratories agronomist or call the laboratory directly as 260-483-4759.
June 30, 2016

Feed for Thought

Forage crops are a cornerstone of many livestock feeding programs. However, to get the most benefit from the forage, it is critical to know the nutritional value of the material so that a proper nutritional program can be developed around that forage. Forage testing can provide this valuable information. However, a good forage analysis begins with proper sampling technique.

A quality feed sample should be as representative of the lot as possible, and that lot should be constituted of relatively uniform materials. For example, it is best to sample each cutting of hay separately, as the quality and composition of the feed can be affected by a number of factors, such as weather, moisture content at harvest, and maturity of the crop. To collect a forage sample, collect sub samples from different bales within the lot and combine them together to make up your sample. More detailed information on how to collect samples from different types of forages can be found in our sampling guide, available on our website or by clicking here.

A question that we often get here at the lab is "is my hay any good?" Different things make a good quality hay to different people in different situations: what one person considers good is not necessarily what someone else would consider good. Analyzing your forages gives you the information necessary to see how that forage fits into an overall feeding program. By working with an animal nutritionist, you can then tailor a feeding program to meet the needs of your particular operation.

Relationships. They’re the most important things we help grow.

Read More