A growing issue in the portions of our region is manure applications leading to unexpected or undesirable increases in soil pH. The secondary challenge is that once this issue is identified, and manure applications have been stopped, the soil pH will continue to increase for several more years.
This situation arises with the use of sand bedded dairy manure or layer poultry litter. Often the sand used to bed dairy cows is not actually silica sand, rather limestone (calcium/magnesium carbonate) sand. Any sand passing through separation processes functions the same as course lime.
Layer chicken flocks have calcium carbonate added to their diets to support eggshell formation and avoid calcium deficiencies in the hens. The excess calcium carbonate passes through the digestive track of the bird and feed waste is added to the layer litter. Broken eggs can also be in the litter from accidental breaks in the layer barn. If the layer operation produces liquid egg materials, the eggshells are often added back into the layer litter for land application.
The bedding sand, calcium carbonate feed additive, and eggshells are slow to dissolve and increase soil pH. It often goes un-noticed for several years of application. However once the rise in soil pH is noted, the soil pH will continue to increase for several years after application of the materials has stopped.
The pH increase of these materials is also a very useful tool when used on low pH soils. To better estimate the impact of these manures on soil pH we can test the manures for CCE (calcium carbonate equivalent) the same as a ag lime. While the interpretation of the CCE data is not defined, it does give a relative understanding how quickly and severely the soil pH might increase. For more information on testing the CCE of manures, contact your ALGL regional agronomist.
The ALGL customer phot calendar is becoming a tradition! This past year we celebrated the 6th issue of the calendar built by you. The calendar is slowly becoming a tradition. Once again, we are reaching out to the best customers a business can ask for.
Do You have photos to share? Please share with us pictures of those things in the life sciences that speak to you and show how amazing the world around us truly is. We want to see pictures that illustrate what fuels your passion for life sciences and customer service. When you get that picture captured, send it to news@algreatlakes.com along with your name, address, and brief note about the picture(s). Please submit your pictures in the highest resolution possible before September 15th. Then we will select our favorite pictures, then we will be letting our followers on Facebook vote on their favorite, to be on the cover of the 2024 calendar. Follow us on Facebook for voting details.
Photo criteria
Rules
With the transition of Indiana, Michigan and Ohio university fertilizer recommendations moving to Mehlich 3 (M3) data the question of, “How do you tell if the ALGL soil test results are in M3 or Bray-P/AA-K?” comes up often.
Internally we refer to the grouping of Bray-P, ammonium acetate (AA) K/Ca/Mg/S/Na, hydrochloric acid (HCl) Mn/Fe/Cu/Zn, and hot water (HW) B as NCR or North Central Region. From a soil testing perspective, the country is divided into regions based on the soil characteristics in that region. Researchers in those regions have identified the tests that are appropriate for the soils and climate of the region. While M3 it utilized by almost all regions of the country, the traditional methods of AA, HCl, and HW are also appropriate for most of the corn belt.
ALGL publishes over 50 different report formats to meet customer needs that vary in appearance. Reports that show M3 values will have “M3” in the column header for that nutrient. If “M3” is in not in the column header for that nutrient the value reflects NCR methods. This does not apply to pH or OM. The values displayed on the report are those used to calculate the CEC and cation saturation percentages.
When looking at electronic data files for uploading to software, this may not be as clear depending on the software used. Some uploads for software do not identify the units nor the method for each column of data. If unsure, your ALGL regional agronomist can help.
In today’s agricultural media, there is a lot of emphasis on soil health, soil biology, and soil carbon. These topics are all interrelated. Whether your goal is the improve the structure of your soil, increase the natural nutrient cycling from one crop residue to the next, or build your bank of soil carbon, the soil microbes need a steady feed source of carbon-based material to carry out these functions. However, not all materials are equal.
One of the best measurements to determine whether or not a material is easily decomposable is the carbon to nitrogen ratio (C:N). Microbes are most easily able to decompose material with a C:N around 25:1. At this level, the microbes can utilize the carbon converting most of it to carbon dioxide leaving behind soil organic matter that has a C:N of about 10:1. The microbes will continue to decompose the remaining soil organic matter, but at a slower and slower rate due to the complexity of the molecular structures that are formed.
The most common form of carbon inputs is the crop residue that remains after harvest. Soybean residue has a C:N of about 25:1, meaning it can be easily decomposed. Corn and wheat residue can have a C:N ranging from 50:1 to 100:1. While these residues are a great source of building carbon, the microbes will compete with your next growing crop for available nitrogen potentially inducing a nitrogen deficiency. Other common carbon inputs are manures. Most manures have C:N around 5:1 to 20:1 which means that there is more than adequate nitrogen for the microbes to utilize while releasing the excess for a growing crop to use. Manures with a high volume of bedding materials such as straw or wood shaving should be tested to ensure that they will not cause a nitrogen deficiency.
Most cover crops have desirable C:N for easy decomposition. However, grasses will have high carbon content than legumes, brassicas, etc. and may require adjusting a nitrogen program for the following commercial crop.
By Jamie Bultemeier - Corporate Sales Director
As the winter professional meeting and trade show season is in full swing, I am constantly thinking about the value of the time and expense versus the return from these events.
Over my 20 plus years in the industry the impact and focus of industry trade shows has changed, and conversations are different. The existing customers are still wanting to discuss current topics, however the time window of the current topics has narrowed. Today customers are not waiting the next trade show to discuss a topic. Usually they are calling, emailing, or texting within a few minutes to a few days of when the thought arose. The business growth conversations are more in depth and private today that does not lend itself to a public conversation at a trade show. The prospective customer looking for a product or service has been replaced with individuals searching for ideas and options, or information in addition to what they have discovered in an internet search. Again, that window has become narrower as the client or potential client is likely to call, email, or text long before the next trade show. The conversations at the events are becoming more personal, and philosophical, which leads to a much deeper understanding of our customers and industry partners.
Information is flowing at a much faster rate. So why incur the expense and commit the time to these activities as a business? The Covid pandemic has taught all of us that personal contact and communication is difficult at best to assign a value to. Yes, virtual events and internet searches are a great way to transfer and receive basic information quickly, but it loses the focus, concentration, and collaboration that meeting in person brings. The key aspect non-verbal communication is lost by not meeting in person. Many of the conversations had at these meetings may never take place if not facilitated by the event being attended.
The dynamics of these events has changed. We may not leave the event with as many direct sales leads as we did in the past, but we leave with an expanded and better developed network of contacts that is constantly growing and will lead to the sales growth if nurtured. Agriculture is still very much a relationship-based industry. If we recognize the changes in these events over time and modify our approach to them, the sales will come, they will just take a slightly different route to materialize.
Calcium carbonate equivalent is a measurement to determine how effective a material is at neutralizing acidity. Calcium carbonate is used as the standard to compare all liming materials to since it is the primary component of limestone. In the laboratory, the CCE of a material is measured by reacting equal amounts of each the material in question and pure laboratory-grade calcium carbonate with a set amount of hydrochloric acid. The amount of remaining acidity in each of the two solutions is then determined through a process called a titration. The CCE is then calculated by dividing the amount of acidity neutralized by the material in question by the amount neutralized by the pure calcium carbonate. This result can then be reported as a percentage.
So, what does this mean in the real world for agronomic applications? Knowing the CCE of a lime can help determine the appropriate rate to apply to our soils to raise and/or maintain the pH in a desirable range for the particular crops being grown. Most recommendations for pH correction assume that the CCE of lime is 90%. In reality quarry derived lime can often range from 75% to 110%. This means that it may take 20 to 30% more or less material to achieve the desired result. The CCE of the lime from a single quarry does not change much over time. However, the lime from different quarries can vary quite a lot. While CCE is an important property to consider when choosing a lime source, there are other factors that go into determining the overall quality of the lime and whether it is a good fit for your operation. These factors will be discussed in future articles.
ALGL has need utilizing the Mehlich 3 (M3) universal soil extractant since 1991, however most of the data sent to customer over the past 30 years has been regressed and reported as Bray P-1, ammonium acetate, hydrochloric acid, and how water boron equivalents. This has been due to most interpretive fertilizer application recommendation sets have historically been in these traditional extractions. These traditional lab methods are commonly referred to as “North Central Region” (NCR) methods. With the revision of university-based fertilizer recommendations in Indiana, Ohio, and Michigan we are seeing an increase in customers opting to receive soil test data in the raw M3 values.
Below are some suggestions to help make the transition to M3 easier.
ALGL will only change data export form upon request by the customer. If you have any questions in regard to changing to M3 data, or if we can be of assistance in the transition, please reach out to your ALGL regional agronomist.
A common question get at the lab is, “Why is the buffer pH on my soil test report blank?” When the soil pH is 6.8 or higher, the buffer pH will be blank on your ALGL soil test report, and for good reason. The reason stems from what the buffer pH value is used for.
On a ALGL soil test there are two pH columns, one titled “Soil pH” and one tilted “Buffer pH”. The soil pH is measured by combining equal parts soil and water to create a slurry. Then the pH of the slurry is measured with a pH meter. This value is used to make management decisions and indicates how the soil chemistry will be affected. For example, this is the value used when referring to soil pH restrictions on pesticides and is the pH value that is managed in soil fertility. If the soil pH is below the desired level, usually 0.2 - 0.3, the buffer pH is used to determine the amount of lime to apply to correct low soil pH soils. In high organic matter soils and soils with a CEC of 7.0 or less, other methods to determine lime application rates are used.
The highest desirable soil pH is 6.8. If a soil has a pH is 6.8 or higher there no need for a lime application to increase soil pH and therefore there is no need to determine a lime rate. Thus, no need for a buffer pH value to determine a lime rate. In GIS software data sets a value of 7.2 is often used to ensure the software calculates a “zero” lime rate without causing an error due to missing data.
The 2022 growing season could be summed up as variable. Throughout the growing season areas experienced too much rain, too little rain, and both. Leading to wide variety of water stress induced nutrient deficiencies in the crop. Despite the moisture stress the yields we good, and harvest was expedient.
Many producers pulled back on fertilizer application rates in the fall of 2021. That same trend continued into the fall of 2022 as the fertilizer prices, while variable, were showing no significant signs of relief. The question continues to be, “how long can growers go with reduced fertilizer applications?” While all fertilizer decisions are dependent on the parameters of a given situation, those growers that have focused on maintaining soil fertility levels over the past few years have had, and still have a distinct advantage.
Since nitrogen is an annual replenishment to the cropping systems, the focus of this question has been on phosphorus and potassium. It takes considerably more fertilizer to increase or decrease phosphorus soil test levels, then potassium soil test levels. Also, in most situations, crops remove less phosphorus than potassium. It may take several years of significant reductions or omission of phosphorus to start showing up in soil tests, but at some point, it will. Potassium soil test levels can decline quickly, 1 or 2 years of omitting potassium fertilizer can result in decreases in soil test levels. Potassium also impacts a plants ability to handle water stress, too much or too little.
The current market indicators are showing an increase in supply and a decrease in demand for phosphorus and potassium going into the 2023 growing season, this indicates a downward pressure on P and K prices. If this carries out, we will see 2-3 years of declined fertilizer application rates. This will be good timing for phosphorus but could be stretching potassium a bit.
The positive in all of the product challenges is that shortages were minimal. With alternates products available in most case this was a good opportunity for producers to grow in their management. This has led producer to try new products and new practices in their operations. Over the past year the agronomy staff has had a significant increase in conversations with client about closer management of nutrients, especially nitrogen. The positive to the higher prices is an overall tighter management of nutrient applications. In 1888, German philosopher Friedrich Nietzsche first stated, “Out of life's school of war—what doesn't kill me, makes me stronger.” This phrase has wide applications as the 2022 growing season pushed many producers, but it also made them better managers.
2022 also pushed us as a laboratory. We were ordering supplies upwards of 6 months in advance to keep the lab operational. The entire year was plagued with supply price increases, supply shortages, shipping delays and labor shortages. The spring soil sampling season volumes were higher than normal with many samples not completed due to the wet fall of 2021, which prevented some soil samples from being collected. This along with strong fertilizer prices led to increased soil sample volumes in the spring of 2022. Strong grain prices supported stronger than normal plant tissue testing volumes during the summer. The fall soil sampling brought a compressed sampling season. Southern Indiana through Tennessee was 3-4 weeks behind in crop development while Michigan and Wisconsin were 2-3 weeks earlier than normal. Usually, samples start coming in from the southern parts of our sales territory in mid-September and there is a 5-7 week delay until northern Michigan hits full harvest. This year the entire service territory started in early October, compressing that start window to about 2-3 weeks. Without any major weather systems hitting the region, sample volumes were continuously strong from early October till early December.
While 2022 proved challenging for all aspects of crop fertility in production agriculture, the dedication of those we work with made it successful. Thank you to our suppliers for doing what they could to always keep us operational. Thank you to the lab staff for their creativity, planning and amazing work ethic to do whatever it took to keep the samples moving for our customers. Finally thank you to our customer for putting your confidence in us, for the long/constant hours to keep the samples flowing into the lab, and for the partnership to work through any challenges that arose. While 2022 was difficult, it was also rewarding to see what we all accomplished working together.
Through the last quarter of 2022, prices of nitrogen, phosphorus and potassium fertilizers continue to diverge. As the price of these fertilizers increased at different rates, and for different reasons starting back in early 2020, the prices continue to respond independently. As phosphorus prices began climbing slowly in 2020, potassium followed later in the winter of 2020/2021.
In agricultural production, the adage “hindsight is 20/20” is all too true in respect to fertilizer purchase decisions the last two years. For example, as prices climbed in 2021, those producers that purchased the elevated prices in the summer of for application in the fall of 2021 made a wise decision as the prices continued to climb through harvest and the following growing season. Delayed fertilizer purchases, and application, has led to increased input costs during the 2021 and 2022 growing seasons. Looking back hesitation has not been a profitable approach to fertilizer purchases, which is often the case in any strong fertilizer price rally. Conversely, those that hesitate may benefit as prices decline.
So, what does the future hold? Foreseeing the future is an educated guess at best. Fertilizer prices are beginning to soften due to reduced demand backed with ample production. The exact opposite market forces that started the climb in prices in the fall of 2020.
How far and how soon fertilizer prices decrease is not yet known, but the signs in the market are showing both phosphorus and potash to be trading sideways to down. The downward pressure is focused on potash, yet phosphorus is responding more. The outside market pressures driving the nitrogen market much more volatile currently. It appears for the near future that nitrogen will remain choppy at best. Of the three main nutrients, nitrogen is impacted the most by the outside markets with continued steady to growing demand in the coming months.