August 31, 2018

Corn Stalk Nitrate Testing

The Corn Stalk Nitrate Test (CSNT) was developed by Iowa State University agronomists to determine if growers were using the proper amounts of nitrogen for corn production.  This is assessed by measuring the amount of nitrate - nitrogen present in the lower portion of the corn stalk around the time the plant reaches physiological maturity.  Corn plants suffering from inadequate N availability remove N from the lower cornstalks and leaves during the grain-filling period.  Corn plants that have more N than needed to attain maximum yields, however, accumulate nitrate in their lower stalks at the end of the season.  Several factors, including weather, can have a profound effect on the results of the test.

SAMPLE GUIDELINES

Samples should be collected between 1/4 milkline to 3 weeks after black layer has formed on 80% of the kernels of most ears.  Field test areas should not be larger than 10 acres.  Collect 15 stalks and remove an 8” segment between 6” and 14” above the soil.  Place in paper bag (not plastic). Refrigerate if delay in shipping is one or more days.  Do not freeze.

INTERPRETATIONS - CSNT

Low

Less than 250 ppm

Indicates high probability that greater availability of N would have resulted in higher yields.  Visual signs of N deficiency are usually observed in this range.

Marginal

250 - 700 ppm nitrate-N (ISU)

Producers should not be concerned when samples test in this range. N availability was close to the minimum amount needed for maximum yields but should not be the target for good nitrogen management.

Optimal

250-2000 ppm nitrate-N (Purdue), 700-2000 ppm nitrate-N (ISU)

Indicates that N supplies were sufficient for maximum yields.

Excess

Greater than 2000 ppm nitrate-N

Indicates that N supplies were above levels needed to maximize profits.

 

The CSNT does not directly indicate how much a N application should be increased or decreased.  However, the use of this test consistently from year to year can be a valuable tool when adjusting N rates.  Since the development of this test, nitrogen prices have increased substantially, increasing the need for sound nitrogen management.  In addition, nitrogen in ground and surface waters can be a major environmental concern.  From both an environmental and an economic perspective, any tool that can help a grower manage nitrogen usage should be seriously considered.  Additional information on the corn stalk nitrate test can be found in our factsheet, “Corn Stalk Nitrate Test”, available on our website.

July 31, 2018

The Basics of Lime Testing

The majority of our soils in the Great Lakes region require regular liming in order to maintain pH levels that are within the appropriate range to maximize crop growth and productivity. The quality and effectiveness of a liming material can vary tremendously depending on the source, composition, and physical properties of the material, so having a reliable lime analysis is critical to ensure that the proper type and quantity of liming material is used to get the desired effect.


Agricultural lime quality is usually measured by three characteristics:
 

  1. Purity - commonly expressed as calcium carbonate equivalent (CCE)
  1. Particle size – finer particles react more quickly to raise soil pH
  1. Moisture – increases weight of the material without increasing effectiveness, essentially “diluting” the material

 
A number of materials can be used to increase the pH of the soil, but historically the most common material is ground limestone, commonly referred to as ag lime. Ag lime is finely ground rock containing high levels of calcium carbonate (CaCO3) and magnesium carbonate (MgCO3). It is actually the carbonate (CO3-) in lime that reacts with acidity (hydrogen) to increase soil pH.


Calcium and magnesium in lime, in addition to being essential plant nutrients, exchange with hydrogen (H+) held on cation exchange sites, moving H+ into soil solution where it can be neutralized by carbonate.


Particle size determines how quickly lime will dissolve and react in the soil. Generally, 40-50% of the particles in a good quality liming material will pass through a 60-mesh sieve. States in this region have different lime quality systems, with state-specific terminology and measurements.

A&L Great Lakes offers a Fact Sheet, entitled Adjusting Lime Rates, which provides details on how to make adjustments. A & L Great Lakes has also developed a spreadsheet which outlines various states’ systems and helps adjust rates for a particular liming material. These useful tools are available from our website at www.algreatlakes.com.
 

July 31, 2018

Feeding Drought Stressed Corn to Livestock

The rainfall this summer has been highly variable throughout the region, and some areas have been exceedingly dry, particularly during July. During times of extended drought when corn grain yield potential is severely limited or nonexistent, the plants may still offer a valuable source of nutrients for livestock provided careful attention is given to how it is harvested and fed. Due to the danger of nitrate levels being elevated during periods of drought, the safest option to use the crop as feed is to ensile it.  One-fifth to two-thirds of the nitrate in the plant may be dissipated during the fermentation process, but remember that this process takes up to 21 days to occur.  Nitrate concentration is highest in the lower one-third of the corn stalk.  If the crop is to be cut for use as feed, leave the bottom third of the plants in the field.

If moisture conditions improve and the corn begins to green up and resume growth, nitrate conversion to proteins accelerates rapidly and ultimately will return to normal. DO NOT harvest or graze corn plants for 5 to 7 days after a heavy rain has stimulated renewed growth! When the plant begins to grow again, nitrate levels will increase for a few days, creating very high concentrations in the plant.

If you want to test the crop for the potential of high nitrate, obtain a representative sample of the field by cutting 15 to 20 plants at the height they will be harvested and cut those plants up to resemble a silage sample.  Ship the sample in a paper bag In order to reduce the risk of the sample rotting on the way to the laboratory.  The following interpretive guidelines can be used to assess the test results. More information about nitrate testing for feed can be found in our FactSheet, Nitrate Toxicity in Feed, available on our website.

 

Nitrate (NO3) in dry matter

Feeding Instructions

(summary from several sources)

0.0 - 0.44 % or 0 - 4,400 ppm

Safe to feed.

0.44 - 0.88 % or 4,400 - 8,800 ppm

Limit to 50% of total dry ration for pregnant animals by either mixing, diluting, or limiting use of forages.

0.88 - 1.50 % or 8,800 - 15,000 ppm

Limit to 25% of total dry ration by mixing, diluting or limiting use of forages. Avoid feeding to pregnant animals.

Over 1.50 % or over 15,000 ppm

TOXIC. Do not feed.

July 31, 2018

Calendar Photo Contest Deadline Extended!

We have extended the deadline to submit photos for the 2019 A&L Great Lakes Labs calendar until August 31. There is still time to get us those great photos!

We want to see pictures that illustrate what fuels your passion for agriculture and customer service. When you get that picture captured, send it to news@algreatlakes.com along with your name and address. Please submit your pictures in the highest resolution possible before August 31st, 2018. In September, we will select our favorite pictures, then we will be letting our followers on Facebook vote on their favorite, to be on the cover of the 2019 calendar. Follow us on Facebook for voting details.

 

Photo criteria 

  • Landscape oriented photos preferred, but not required.
  • Please share the highest possible resolution photo.
  • Please try to avoid company logos and easily identifiable faces.
  • No dangerous or illegal activities.

Rules

  • Photo submission deadline is August 31st, 2018
  • One entry per person, you may submit more than one photo.
  • Must be 18 years or older to enter.
  • Need not be present to win.
  • No purchase necessary.
  • Submitting a photo gives A&L Great Lakes permission to use the photo for promotional use.
  • Employees of A&L Great Lakes Laboratories, Inc. and their immediate families are not eligible for prizes, but may submit photos for consideration in the calendar.
  • Use of images in promotional items does not increase your odds of winning a prize.
  • Contest decisions and/or judgements by A&L Great Lakes Laboratories, Inc. are final.
June 28, 2018

Helpful Tips for Submitting Fertilizer Samples

Quality analysis begins with a quality sample. When submitting fertilizer materials to the lab for analysis, please remember these helpful suggestions:

  1. Paperwork
  • Send in a completed ‘Fertilizer & Lime Sample Submittal Form’ with your sample.  This can be found on our website at www.algreatlakes.com.   Please be sure to include:
  • Account number. If you do not have an account with us, be sure to add your name, address, and phone number.
  • Email address if you would like your report emailed to you.
  • Analysis that you desire.
  • Approximate Analysis of your fertilizer, if known. This not necessary, but cuts down on the turnaround time by eliminating the need to do preliminary testing to determine which method is most appropriate.

 

  1. Submitting Liquid Fertilizers
  • When sending in a liquid sample, it is very important not to ship in a glass container. Instead choose a plastic bottle for liquid fertilizers. 
  • We need around 4-8 ounces of liquid fertilizer for most tests.
  • Please leave a little head space in your container so that the sample can expand if necessary, and so we can mix the sample properly.
  • Wrap electrical tape around the top of your sealed container. This helps ensure that the cap will not come loose during shipment.

 

  1. Submitting Dry Fertilizers
  • Place dry fertilizers in a “Ziploc” type baggie. We suggest that you double bag it to help contain sample if it leaks.
  • We need around 1 cup of dry fertilizer for analysis.

 

  1. Submitting Lime Samples
  • We need approximately 2 cups of limestone sample if sieve work is needed and 1 cup if it is not. If your sample is a wet sludgy type, we will need closer to 3-4 cups. Use the sampling container most appropriate for the material to be tested.

If you have any questions about submitting lime or fertilizer samples, please call Diane, fertilizer department manager, or one of our agronomists at 260-483-4759 and we will be happy to help.

June 28, 2018

Understanding Soil Test Phosphorus

Phosphorus (P) is a key nutrient for crop production, and keeping adequate levels of P in the soil is important for maximizing plant growth and development. However, understanding the various analytical methods for determining soil phosphorus can be challenging. The greatest confusion often lies in understanding why there are different analytical methods for determining soil P. The key to understanding this is to differentiate between total, available, and extractable levels of a soil nutrient.

Total P is the total amount of phosphorus in the soil. This can be P contained in organic materials, P in soil solution, exchangeable P, and P contained in insoluble mineral forms, and can be quite high in many soils. This information generally has limited agronomic use, however, because the amount of P that is actually plant available is generally only a small amount of the total P in the soil.
 
Of much greater benefit from an agricultural perspective is what is referred to as extractable P. Extractable P is the amount of phosphorus that can be extracted, or removed, from the soil by using one of a number of different types of chemical extractants. These extractants have been developed to remove certain forms of P from the soil, and this can be a more accurate index of what might be actually available to a growing crop The ultimate goal of an extractant is to reliably and consistently determine levels of the nutrient that correlate with the amount of that nutrient that might be available to a growing plant.
 
Bray-Kurtz P1 (Bray P1) has long been utilized in the Great Lakes region as the “standard” P extractant. It was developed in 1945 at the University of Illinois to correlate with the plant-available P fraction of the soil in slightly acid soils. Many of the P recommendation models, including the Tri State Fertilizer Recommendations for Corn, Soybeans, Wheat, and Alfalfa, still utilize Bray P1 soil test values in their equations due to the widespread use of the extractant when these models were developed.
 
Bray P2, or strong Bray, is a more acidic solution that extracts forms of P that are less soluble than those extracted by the Bray P1 method. This extractant was commonly used when rock phosphate was the major P fertilizer product used in agriculture. It is still utilized by many to measure less soluble forms of P, what is commonly referred to as “active reserve” P in the soil, although most P recommendation models do not consider Bray P2.
 
Olsen P, or bicarbonate P, is a procedure that was developed in the 1950’s for determining P levels in neutral to alkaline soils. These soils are more commonly found in areas west of the Great Lakes region, so this test is only performed by request.
 
Mehlich-3 is the most commonly used extractant currently employed by soil testing laboratories in the region. It is a relatively safe extractant to work with and can be used to determine levels of other nutrients in addition to P, which makes it a more efficient method than others. Mehlich-3 is effective on the same types of soils as the Bray P1, but Mehlich-3 soil test P values are somewhat higher than those obtained by a Bray P1 extraction. However, the Mehlich-3 values correlate well with Bray P1 values, so Mehlich-3 values can be regressed into a Bray P1 equivalent number by using a mathematical operation. This allows soil test P values to be reported as a Bray P1 equivalent, which is necessary for making P fertilizer recommendations.
 
For any type of laboratory analysis to be useful, interpretations must exist in order for the data to be utilized to make decisions on a field scale. While different extracts have been developed to target different forms of P in the soil that may be plant available, this does not mean that the values determined by an extraction are absolute quantities of that nutrient in the soil. Much research has been done to correlate these soil test levels with crop response to a fertilizer material, and it is that correlation that is necessary for interpreting this information and making decisions.

June 27, 2018

Time is Running Out!

It's almost the deadline to submit a picture for our 2019 A&L Great Lakes calendar! We want to see pictures that illustrate what fuels your passion for agriculture and customer service. When you get that picture captured, send it to news@algreatlakes.com along with your name and address. Please submit your pictures in the highest resolution possible before August 1st, 2018. In August we will select our favorite pictures, then we will be letting our followers on Facebook vote on their favorite, to be on the cover of the 2019 calendar. Follow us on Facebook for voting details.

 

Photo criteria 

  • Landscape oriented photos preferred, but not required.
  • Please share the highest possible resolution photo.
  • Please try to avoid company logos and easily identifiable faces.
  • No dangerous or illegal activities.

Rules

  • Photo submission deadline is August 1st, 2018
  • One entry per person, you may submit more than one photo.
  • Must be 18 years or older to enter.
  • Need not be present to win.
  • No purchase necessary.
  • Submitting a photo gives A&L Great Lakes permission to use the photo for promotional use.
  • Employees of A&L Great Lakes Laboratories, Inc. and their immediate families are not eligible for prizes, but may submit photos for consideration in the calendar.
  • Use of images in promotional items does not increase your odds of winning a prize.
  • Contest decisions and/or judgements by A&L Great Lakes Laboratories, Inc. are final.
May 29, 2018

Precision Ag Adoption Rates Still Lag

The 2017 Purdue Precision Dealer Survey shares some interesting insight into the adoption of precision soil fertility management. Over 80% of ag dealers offer services like precision soil sampling and variable rate nutrient application. More recent practices such as satellite/aerial imagery are also gaining popularity, with about half of dealers providing these services.

 

The adoption of precision ag started in the mid 90’s, and it continues to grow, although not as rapidly as expected. Access to these services is not a limiting factor, but adoption still lags. As estimated by dealers in 2017, only 43% of producers are utilizing precision soil sampling, and only 38% are making variable rate applications. This means 5% of growers are spending money on the collection of spatially referenced soil samples and not gaining the benefit of variable rate application of fertilizer inputs.

Looking into the future of precision fertility management, there is tremendous potential and a significant amount of work to be done. These are just a few of the interesting facts contained within the Purdue survey data. To dig into the survey data for yourself, see the full report at http://agribusiness.purdue.edu/files/file/croplife-purdue-2017-precision-dealer-survey-report.pdf .

May 28, 2018

Soil Applied vs. Foliar Applied Nutrients

Both soil-applied and foliar-applied nutrients have a place in modern agricultural production systems.  Historically, the vast majority of nutrients were applied to the soil, either as manure or some other type of organic material, or as synthetic fertilizer materials. This method has a number of distinct advantages.

Perhaps the most significant advantage of soil-applied nutrients is that this method supplies nutrients where the plants are designed to take in nutrients: at the roots. The roots of higher plants are adapted to take in nutrients and water from the soil and distribute them throughout the plant through the plant’s conductive tissues. Conversely, plant leaves are more adapted to keeping materials out of the plant due to their structure and composition since few nutrients are taken into plants via the leaves in a natural system. Because of this, plant roots can assimilate more nutrients into the plant than can the leaves of a plant.

However, foliar-applied nutrients also have a number of distinct advantages over soil-applied nutrients. One of the most significant of these is the rapid intake of nutrients. Because these materials are applied directly to the plant rather than the soil, their intake is not dependent on the nutrient moving through the soil and into the root. Therefore, they can have an immediate impact on the plant, which is critical when a given nutrient is lacking. Most modern foliar fertilizers have been formulated to ensure quick penetration into the plant, which can speed this process even further.

Another major benefit of foliar-applied nutrients is the fact that these nutrients bypass the soil altogether. Soil fertility is more complicated than the simple presence or absence of an element in the soil. For that element to be assimilated by the plant, it must be in a form that the plant can take up. Often a potential plant nutrient may be present in the soil, but certain soil conditions, such as pH, may cause that nutrient to be held in a form that cannot be taken up by the plant. If more nutrient is applied to the soil, it still may not benefit the plant because the underlying reason for the deficiency still exists. In these situations, foliar applications of nutrients may be the most effective way of supplying the needed nutrient to the plant.

Modern agronomic production is very sophisticated and requires a number of different techniques to meet the nutrient needs of the crop. Therefore, the best approach is to fully assess the situation to determine the best application method. Both application methods have distinct benefits and should be a part of the plant nutrient toolbox.

 

May 28, 2018

Assessing Soil Quality

Soil quality, often referred to as soil health, is a topic that continues to receive much attention.  As producers continue to push for greater yields and improved economics in their crop production system, more emphasis is being placed on the soil environment and its ability to produce a healthy crop in a sustainable way.  However, evaluating soil quality is not always as simple as pulling a soil sample and sending it to the lab.

The USDA-NRCS defines soil quality as “the continued capacity of soil to function as a vital living ecosystem that sustains plants, animals, and humans”.  As evidenced by this definition, there is no one set parameter by which one measures soil quality.  The term can be interpreted in a number of ways depending on the situation.  Different soils in different locations will have different forms of “quality”, so the producer must learn to understand the capabilities of their soil and temper their expectations according to that capability.

One of the most fundamental steps to take when evaluating and managing for soil quality is to understand the soil that you are working with. Some properties of the soil cannot be practically changed.  These properties, known as inherent soil properties, are a result of how the soil was formed.  One example of this is soil texture.  A sandy soil will, for all practical purposes, always be a sandy soil.  Short of incorporating a huge amount of silt or clay, there is nothing you can do to change this. Massive changes like this can also result in negative impacts on the soil. However, there are other soil properties that can be influenced somewhat by management.  These properties, known as dynamic soil properties, can be influenced by how the soil is managed.  For example, soil organic matter content is a dynamic soil property.  It can change, however slowly, by how you manage tillage and crop residues. Soil structure can also be improved through proper soil management, again these changes take years to have a significant positive impact.

 A number of different assessments should be made, including a thorough examination of the physical properties of the soil. While soil health testing methods are being developed, these are not standardized today and interpretation of results still require validation. In addition, a standard soil test is also an important way to evaluate the chemical properties of the soil to ensure that nutrient levels are appropriate for growth.

Relationships. They’re the most important things we help grow.

Read More