July 27, 2016

Manure Analysis for CNMP’s

Land application of livestock manure can be a very cost-effective source of nutrients for crop producers as well as an efficient means of waste disposal for livestock producers. However, to get the most value from a manure application and minimize any potential off-site environmental impacts, it is important to follow the 4R’s of nutrient stewardship. This means using the right source, the right rate, at the right time, with the right placement. The development of a Comprehensive Nutrient Management Plan (CNMP) with the Natural Resources Conservation Service (NRCS) can be a very useful tool for livestock producers looking to responsibly land apply their manure.

The basic requirements of a CNMP are described in the NRCS Conservation Practice Standard 590. However, it is always best to check with your local NRCS office to determine any specific requirements for your area. Two of the key elements in developing a CNMP require laboratory analysis. First, the fields where the manure is to be applied must have current soil test data that is no older than three years. This will ensure that the nutrients are not being over applied. The second laboratory analysis is a nutrient analysis of the manure. This will ensure that the correct rate is being applied.

Laboratory analysis of manure for CNMP’s must include, at a minimum, total nitrogen, ammonium nitrogen, total phosphorus, and total potassium. The benefit in using an analysis package that include ammonium nitrogen is that the estimation of first year available nitrogen is much more accurate as compared to a calculated value based on total nitrogen alone. The analysis package available at A&L Great Lakes Laboratories that provides the minimum requirement for CNMP’s is the M4. For a complete listing of manure analysis packages, please visit our website and navigate to manure analysis under services.

July 27, 2016

Sampling for SCN

Interest has been steadily growing in soil sampling for Soybean Cyst Nematode (SCN), and with good reason. SCN continues to be the leading yield loss pathogen in U.S. soybean production. The impacts of SCN continue to grow as the pest continues to spread throughout the soybean production acres of the U.S. The map below shows how SCN has spread from a small isolated area along the Mississippi River in 1957 to the last survey in 2014. It is particularly concerning how quickly the area affected has expanded since 2001.

Map depicting the spread of Soybean Cyst Nematode

http://www.soybeanresearchinfo.com/diseases/scnpics/SCN_dist57_14_lg.gif

The spread of SCN through the Great Lakes region, increased focus on high yield soybeans, the potential link of Sudden Death Syndrome to plants experiencing SCN feeding, and new products on the market showing some level of SCN control has increased the interest in sampling for SCN.

Sampling for SCN can take two forms: a diagnostic approach to identify a crop issue, or a proactive management approach looking at whole field SCN levels to determine future planned management activities. Each of the approaches have different sampling procedures and interpretations, but utilize the same laboratory procedures. A N-CYST test from A&L Great Lakes Laboratories provides a count of both SCN eggs and adult SCN cysts which are used to identify treatment and management thresholds.

A diagnostic approach is used when a yellow and stunted area of a soybean field is suspected to have elevated SCN populations leading to the visual symptoms. In this case, soil sampling for SCN will be targeted to verify the presence and amount of SCN in the affected area. While visual inspection of the roots can note the presence of SCN, it does not quantify the population. SCN may be present, but at populations below the threshold at which injury should occur. To properly sample for SCN, 8 or more soil sample cores should be taken 6 to 8 inches deep in the affected area. If the field has a history of elevated SCN levels it may be advisable to take a sample from a portion of the field not showing visual symptoms to collect comparative data. Place the soil cores in a clean plastic bucket. Once all of the cores are collected, thoroughly mix the sample and place two cups of soil into a sealed and labeled soil sample bag or plastic bag. The samples should be sealed to avoid moisture loss and protected from extreme temperatures; do not freeze or refrigerate, or leave in the dash of the truck on a summer day. A cooler can be very helpful for sample storage during collection. If the samples are handled in such a way that lead to cyst death, the adult counts will be negatively impacted. Ship or deliver to the lab a quickly as possible.

As a tool for proactive management of SCN, whole field samples can be collected to identify average SCN populations across a field or region of a field. This method is helpful in identifying fields that need additional management to address SCN, but populations can be underestimated when sampling a large area, because small areas of very high SCN populations can be diluted with unaffected areas. Whole field sampling for SCN mirrors traditional whole field composite soil fertility samples. Take samples late in the growing season after flower through harvest. Collect a minimum of 10 to 20 soil cores to a depth of 6 to 8 inches, while walking in a zig-zag pattern across the field, and place the soil cores in a clean plastic bucket. Once all of the cores are collected, thoroughly mix the sample and place two cups of soil into a sealed and labeled plastic bag. Again protect the samples from drying out and from extreme temperatures while shipping the samples to the laboratory as quickly as possible.

For any additional questions regarding SCN sampling, feel free to contact your A&L Great Lakes Laboratories agronomist or call the laboratory directly as 260-483-4759.
June 30, 2016

Feed for Thought

Forage crops are a cornerstone of many livestock feeding programs. However, to get the most benefit from the forage, it is critical to know the nutritional value of the material so that a proper nutritional program can be developed around that forage. Forage testing can provide this valuable information. However, a good forage analysis begins with proper sampling technique.

A quality feed sample should be as representative of the lot as possible, and that lot should be constituted of relatively uniform materials. For example, it is best to sample each cutting of hay separately, as the quality and composition of the feed can be affected by a number of factors, such as weather, moisture content at harvest, and maturity of the crop. To collect a forage sample, collect sub samples from different bales within the lot and combine them together to make up your sample. More detailed information on how to collect samples from different types of forages can be found in our sampling guide, available on our website or by clicking here.

A question that we often get here at the lab is "is my hay any good?" Different things make a good quality hay to different people in different situations: what one person considers good is not necessarily what someone else would consider good. Analyzing your forages gives you the information necessary to see how that forage fits into an overall feeding program. By working with an animal nutritionist, you can then tailor a feeding program to meet the needs of your particular operation.

June 29, 2016

Agronomists Leading the Charge for Cleaner Water

Since the introduction of the Certified Crop Advisor program by the American Society of Agronomy in 1992, quite a bit in agriculture has changed. Through all of the challenges and changes during the past 20 years, Certified Crop Advisors have been at the forefront of examining the situation at hand, formulating solutions, and educating others in the industry. As nutrient management challenges impact water quality around the country, Certified Crop Advisors are taking the lead once again with the introduction of the 4R Nutrient Management Specialist certification.

The 4R Nutrient Management Specialist certification was added to the Certified Crop Advisor repertoire of skills and knowledge to focus on nutrient management and the resulting environmental impact. In August of 2015 the first 4R Nutrient Management Specialist examination was held with a limited number of participants. A larger group took the exam in January of 2016 focusing on the Right Rate, Right Source, Right Place, and Right Time to apply nutrients. States participating in the new specialty certification include Illinois, Indiana, Iowa, Michigan, Minnesota, and Wisconsin. The certified agronomy staff at A&L Great Lakes Laboratories has begun earning this specialist certification, and will continue to certify agronomy staff members during future exams.

June 29, 2016

Know Your Irrigation Water!

When grain prices were on the rise, irrigation management began to garner more focus in the desire to manage soil moisture levels for optimal yield. This drove greater awareness in soil moisture monitoring and variable rate applications based on the water holding capacity of the soil. As the cost to pump water remains a large expense, there is focus on continually improving water use efficiency through maintenance of the irrigation systems and soil moisture monitoring. The traditional focus of irrigation management has been on technology and the equipment itself. However, the fundamental input of irrigation is still often overlooked; the water itself.
 
Many producers in the Great Lakes region feel that irrigation water testing is not needed since we do not face the salinity and sodium issues that are seen in arid regions of the United States. While it is true that salinity and sodium are rarely a concern for irrigated production systems in the Great Lakes region, we have our own unique challenges that must be managed appropriately.
 
The majority of our irrigation water in the Great Lakes region is “hard”, due to high levels of calcium based minerals. Long term application of untreated irrigation water that is high in calcium carbonate can lead to several challenges. This water tends to have a high pH that can lead to increased pH of surface soils over time causing nutrient availability issues, or could led to herbicide carryover issues. These effects can be exaggerated on sandy or low CEC soils. Irrigation water high in calcium or iron can also lead to calcium deposits on irrigation equipment leading to non-uniform water applications and additional maintenance costs.  An irrigation water suitability test is key in identifying the severity of high pH and high calcium carbonate levels, and can be used to identify, calibrate, and verify cost effective corrective actions.

Irrigation water quality changes during a short period may be slight, but over time can be significant. A water source that started with good quality may change so that it is no longer acceptable for the intended use.

We strongly encourage all users of irrigation water to establish a water quality baseline for each source (well) by testing the water. Follow-up tests should be conducted periodically to determine if the water quality has changed and, if so, the potential effect on the water use.

May 27, 2016

Spray Water Testing

A key tool that producers can use to reduce the risk of developing herbicide resistant weeds is to use full rates of herbicides. Reducing the application rate of herbicides can help select for and speed up the development of resistant weeds in the plant population.

Minerals in the water used to spray herbicides can reduce the effectiveness of glyphosate and, in effect, reduce the application rate. Many producers use AMS to combat this process. The following article, originally published in No-Till Farmer magazine, does a very good job of explaining the need to determine the correct AMS use rate with glyphosate products.

Our Spray Water Test packages provide a suggested minimum AMS use rate by entering the lab results into an equation developed by researchers at North Dakota State University. However, herbicide users must always read and follow the herbicide label.

 

Why Your Glyphosate May Not Be Working - No-Till Farmer

May 25, 2016

Environmental Monitoring Requirements for Livestock Facilities

A&L Great Lakes Laboratories offers many analytical services as well as the technical expertise to assist livestock producers of every size to manage and monitor nutrients both in the field and around the facility.  We are able to assist our customers in the livestock industry with nutrient analysis that will help them manage manure and site run-off water in a responsible manner that insures compliance with state and federal regulations, provides an economical source of nutrients for cropland and maintains good stewardship practices for the environment.

Many Illinois livestock producers come under the Illinois Depart of Agriculture Waste Management part 900 “Livestock Management Facility Regulations” that require perimeter drainage tile sampling, analysis and reporting for storm water around certain livestock facilities.  According to section 900.511…

“The owner or operator of the livestock waste handling facility shall sample the liquid from the monitoring port prior to the livestock waste handling facility being placed into service and at least quarterly thereafter, if any liquid is available.  The samples shall be analyzed for the following items: Nitrate-nitrogen, phosphate-phosphorus, Chloride, sulfate and ammonia-nitrogen.”

We would be happy to assist our livestock customers with facility water, tile water, manure and soil sample analysis in support of your manure management and facility monitoring program.  If your state requires a specific test for additional nutrients, please contact the lab and we would be happy to discuss your individual needs.

May 16, 2016

eDocs – A Deeper Dive

Most of our customers are aware of the basic benefits of eDocs.  In fact, some use eDocs exclusively to retrieve their reports and data files.   We want to review some of the functionality of eDocs that perhaps you aren’t aware of.

  • A&L Great Lakes Laboratories, Inc. scans each and every submittal form or Chain of Custody paperwork that is sent to us. This is an important piece of information for the customer if there are questions about who sent samples, sample or project ID’s or what tests were requested etc.
  • Data and reports are available back to the year 2004.
  • Each report number has an associated “Download All” button. The function of this command is to zip up all documents associated with a particular report into a single file.  In the example below, the Report (PDF), submittal form, CSV (Data1) and Excel (Data2) files would all be zipped into a single file for download or to save to your local computer.

Edocs Screenshot

 

  • Often a customer would like to download all the files for a given year, or perhaps for a given grower. eDocs makes this easy.  To get all the files for a given year, query out the year under the “Query Settings” and “Select Date Range”.  Once your screen refreshes, check the box along the left side of the screen which corresponds to the file type you wish to download.  If you want all the Data1 files, then check the Data1 box and press the “Download Files” button.  eDocs will zip up all of the Data1 (or whichever box is checked) type files into a single zip file that can be downloaded or saved right to the user’s local drive.  This is a great way to get many files into a single concise format to work with.

 

  • If you are an eDocs user that has multiple accounts with A&L Great Lakes Laboratories, it would most likely be easier for you to access all your accounts through a single master eDocs login. In that case, please notify us and we will create a “Master Account” that will enable you to access all accounts with a single logon.
  • eDocs normally will email you notifications when new documents have been uploaded to your eDocs account. However, these notifications are controlled by the “User Preferences” section.  If you don’t want to receive email notifications, go to the “User Preferences” tab.  Scroll to the bottom and notice the “Notification Frequency”.  Here is where you can disable the notifications.  Also, if you would prefer to receive a text message rather than an email, that option is also available under “Notification Method” as well as the option to disable notifications.

April 28, 2016

Soil Test Summaries - One Step Beyond

The International Plant Nutrition Institute (IPNI) recently released the 2015 Soil Test Levels in North America report. This report is the latest in the series of summaries that IPNI,  along with the Potash and Phosphate Institute (PPI), its predecessor organization, have produced since the late 1960s.  Soil testing labs around the country were asked to supply soil test data with the only identification being the state a sample comes from.  Data from over 7 million samples from 60 soil testing labs is included in the 2015 summary.  In conjunction with the 2015 summary IPNI developed a Soil Test Summary website with extensive capabilities to evaluate and summarize data at a national, regional and state level.

A&L Great Lakes Laboratories contributes to the periodic IPNI soil test summaries because we believe there is significant value in knowing current soil test levels and their trends over time.  Consistent with this, each year we provide soil test summaries to each of our soil testing customers.  This enables them to review soil test levels for their business.  We also create yearly soil test summaries for the Great Lakes region, states and quadrants of states, with over 10 years of these summaries posted on the A&L Great Lakes website for public use.

The geographical size (scale) of a soil test summary determines what information can be gained.  The IPNI national survey provides a window into state and regional soil fertility management practices as well as evaluating the effects of fertilizer sales trends.  Drilling down to a sub-state, watershed or county level allows a closer look at nutrient management practices.  An agronomic consultant or fertilizer dealer may identify challenges or opportunities when viewing their soil test summary.  A farming operation can evaluate trends for their entire business, individual farms and/or fields.  When all of this data is used together, a more complete picture of the overall trends in soil fertility management come into better focus.

Trends in soil test levels are powerful tools that can be used to guide soil fertility management decisions on many levels.  A&L Great Lakes is proud to work with IPNI to contribute to this valuable resource.

April 28, 2016

Changing Faces

Welcome Steven Piercy to the full time staff of A & L Great Lakes Laboratory.  Steven is not new to our team; he actually began working for us in the fall of 2014 as temporary help for our soil season and continued in the plant room last summer.  He has great versatility and can work in many areas of our laboratory.

New A&L employee Steven Piercy working in the lab

His primary focus will be analyzing soil pH and performing germinations for compost analysis.  He resides in Fort Wayne, Indiana and is pursuing a degree from Purdue University.

The opportunity for Steven to join our staff comes with the departure of Le Matha, who had been with us since 2012.  Le is pursuing his love of nature and the culinary arts in Yellowstone National Park.  He will now have many opportunities to fish as he works for the US Parks in the kitchens of resorts within the park.  He too was a valued employee who is missed. We wish them both great success in their new endeavors.

Relationships. They’re the most important things we help grow.

Read More