­
A&L Great Lakes News Page 14
December 16, 2020

Maybe 2019 Was Not So Bad and The Bright Side of 2020... Agronomically That Is!

In past years, the end of the calendar year for agronomists and producers has been denoted by the beginning of the winter meeting season at the conclusion of the growing season. Like many things in 2020, the meeting season is a bit different this year. The in-person meetings have been canceled or replaced with virtual experiences, so the sharing of observations and lessons learn from the 2020 growing season is very different.  So, what was some of the big trends in soil testing for 2020 and did the agronomy fears at the conclusion of 2019 occur? We’re glad you asked!

The late fall of 2019 soil sampling continued uninterrupted into an early spring of 2020. Traditionally soil sampling increases at a rapid rate in late September and builds though October. The sample volume reaches a peak in mid to late October, then begins decreasing sometime late November. Sample numbers continue to slowly decline until weather conditions stops soil sampling in mid to late December. The mild 2019/2020 winter, combined with the late 2019 harvest, led to a slow ramp up in mid-November and samples continued to arrive at the lab at a steady rate all winter. The was no clear end to fall 2019 sampling, nor a defined beginning of 2020 spring sampling.  The fall 2020 soil sampling season has been, and continues to be strong, following a more “normal” sampling season. Something that has not happened 3 or 4 years.

One of the main concerns from the wet fall of 2019 was the potential for soil compaction. The wet year set the stage for compaction to occur during both the 2019 planting and fall harvest. The wet fall of 2019 prevented proper fall tillage to correct compaction from 2019, let alone compaction created in 2018 or 2017. The preplant expectation was that soil compaction would negatively impact on yield in 2020, especially if the weather pattern turned dry. For some areas 2020 was dry, but the reports of soil compaction related crop issues were not as severe as expected, leading to near average yields for  most growers.  There are many theories as to why the impacts of soil compaction was less than expected, they mostly revolve around overall improvements in soil management leading to improved soil structure in recent years. Producers took what preventative steps they could to reduce the impact of soil compaction in 2020 and it appears to have worked. Those areas that were unable to plant in 2019 were able to perform deep or primary tillage in the late summer early fall before the wet conditions began.

Also, many growers focused on earlier maturing varieties to avoid another late fall. This was a positive management strategy as many portions of the ALGL trade region ran behind schedule on GDU accumulation in the summer of 2020. With the timely 2020 harvest allowing for well timed soil sampling and fall field work, along with growing positively in the grain markets, the overall optimism for improved farm incomes in the coming years is growing. While we may want to forget 2019 for the agronomic challenges and likewise push 2020 from our memory due to Covid 19, that may not be wise for future management.

Inconstancies in soil sampling can lead to variation in soil test values over time. Challenging weather conditions in the spring and/or fall soil sampling seasons from 2017 though the spring of 2020 may lead to slight variations in soil test results. In the future when comparing soil test data sets that include samples collected in this time frame, the challenges of these year may shed some light on soil sample variances. More frequent soil sampling can reduce the impact of these variances by adding more data points to the analysis.  Repeated soil sampling provides a check and balance approach to soil fertility management.

While we all have been impacted by the Covid Pandemic, the bright point was the timely fall harvest leading to some very good conditions to complete fall soil sampling, perform fall tillage in good to near idea conditions, plant cover crops, and make timely fertilizer/lime applications.  The condition of the soil samples coming into the lab were some of the best sample quality we have seen in the past 3 to 4 years. Hopefully the fall soil sampling season of 2020 will provide some stability to long terms soil fertility management.

December 10, 2020

More Changes to the Tri-State Fertilizer Recommendations

The finalized document for the latest revision of the Tri-State Fertilizers recommendations for Indiana, Ohio and Michigan has been released. Various aspects of the revised recommendations have been released in small segments over the past 2 years. The summaries of the changes/updates to the recommendations prior to the release of the final document have noted that soil pH and liming recommendations would not change from the previous version released in 1995. Upon review of the final document, notable changes have been made to the university recommendations for soil pH management and lime application rates.

  • Now there are a set of lime recommendations for Ohio and separate set for Indiana and Michigan.
  • Lime rate recommendations for mineral soils, those soils with less than 20% organic matter and a cation exchange capacity of greater than 5 meq/100cc, have changed.
    • Indiana and Michigan lime rate recommendations have different values in the equations to calculate lime rates and rates have been increased by 10-20%.
    • The Ohio lime rate recommendations for mineral soils have new equations to calculate lime rates and rates have been decreased by 30-35%.
  • Organic soil lime rates, for those soils with greater than 20% organic matter, have changed.
    • Michigan and Indiana lime rates have increased 25-100%. In the previous version of the recommendations there was one equation for organic soils, now there are three.
    • Ohio lime rates have decreased 30-35% and the publication does not offer equations to calculate rates.
  • Weakly buffered soils were not specially defined in the previous recommendation document, but often classified through interpretation as soils with cation exchange capacities of 6 meq/100cc or less. The revised recommendation set reference to weakly buffered soils as those with a cation exchange capacity of less than 5 meq/100cc . The adoption of Mehlich 3 as the extractant used to determine potassium, calcium and magnesium levels will led to a 15-18% increase in cation exchange capacity by summation values reported on soil tests.

The final release the “Tri-State Fertilizer Recommendations for Corn, Soybeans, Wheat, and Alfalfa” can be found at https://extensionpubs.osu.edu/search.php?search_query=974&section=product.

December 09, 2020

Not All Manure Is the Same – Poultry Litter

The nutrient characteristics of a manure is dependent the species of animal, the diet of the animals, and how the manure is handled. In recent years poultry litter has been elevated to a unique value status among the manures. It has gone from a waste product to a commodity of value, in some cases, garnering a premium over an equal amount of nutrient in the form of commercial fertilizer.  View full article →
November 30, 2020

Soil Sampling Lubricants

Fall weather is generally full of ups and downs. As the weather turns cooler and the wind picks up, many of you are rushing to complete last-minute soil sampling before the ground freezes. Cold and wet weather can complicate the sampling process, and can cause great frustration when samples begin to stick in the probe. However, using a lubricant can help to reduce the sticking of samples in the probe and make the process work a bit easier on the sampler.

A number of different lubricants have been evaluated over the years for their effectiveness as a sampling aid and their impact on the analysis results. Two of the most commonly recommended lubricants are either WD-40, or aerosol cooking sprays such as Pam. Either of these products act as a water dispersant, effectively creating a film on the metal that repels water and limits the sticking within the tube. From anecdotal evidence, WD-40 tends to be a bit more persistent on the probe than does cooking spray, and therefore tends to require less frequent application.

 

The effect of either material generally has a negligible effect on measured levels of macronutrients. There is some evidence that suggests micronutrient levels may be affected somewhat, but the effect is generally pretty minor. WD-40 tends to affect micronutrient levels less than cooking spray, so it is recommended when micronutrients are to be analyzed. This may be more significant in soils that are naturally low in micronutrients because the slight variation in levels will be a larger percentage of the total levels. However, if the use of lubricants results in better quality sample collection, the benefits of using a lubricant should greatly outweigh any potential for contamination from the lubricant itself.

November 03, 2020

The Power of Observation

It is often said that “you are never too old to learn” but a quick look into the history of ag technology reveals the limited tools and information available for learning a few short years ago.  Some of the earlier work in soil testing began in 1945-1950 and commercial fertilizers were not readily available until the 1960’s.  Producers of this era had limited learning resources available as the university extension programs were in their infancy and they had to rely on experience, personal observation and interaction with their peers to make management decisions.

Early gypsum mining operations began in the late 1800’s and it was observed that the grass and plants near the mine entrance were green and lush compared to areas away from the mine and it was likely due to the application of sulfur as the miners tracked dust from the mine and walked across the grass areas.  This prompted some of the first experimentation of applications of gypsum to crop land.  Sulfur deficiency was likely not well understood at the time but through the knowledge gained from direct observation they were able to improve crop production.

The concept of pH was developed in 1909 by a Danish scientist named Sorensen and the first electronic method of measuring pH was invented in 1934 by Arnold Beckman at California Institute of Technology working with a small start-up company called Sunkist.  They were looking for quick and easy method of testing the acidity of lemons.

My grandfather completed the 8th grade in 1927 as this was the highest educational opportunity available to him and he began farming in northeast Missouri at that time.  The only available fertilizer material was manure and he was beginning to experiment with lime applications approximately 25 years after Sorensen first described the concept of pH.  I remember him describing his lime recommendations based on his personal observations in this manner, “When the soil will not produce good sweet clover, add 2 tons of lime.”

He grew hay crops of sweet clover and lespedeza as he observed it was well adapted to the low fertility soil conditions at the time.  From a University of Missouri Extension publication, “Sweet clover has an extreme range of adaptation. About the only consistent requirement is one of high pH. Sweet clover needs a high pH, 6.0 or higher, for proper nodulation to occur, and it has a higher calcium requirement as well. Sweet clover is able to obtain phosphorus from relatively unavailable soil phosphates and will grow on soils where alfalfa, red clover or ladino will fail. Except for its high lime requirements, it is similar to lespedeza, which tolerates very low fertility conditions.”  It appears his personal observations led him to a very suitable cropping choice.

The fertilizer supply chain developed and improved through the 70’s and 80’s and the first yield monitor came on the scene in 1992.  Grid soil sampling and intensive management practices and management options continue to improve every season but it is important to stay grounded in the basics.  Keep learning and continue to hone your skills of personal observation.

Written by Stan Miles, ALGL Agronomist

November 03, 2020

Sample Shipping Tips to Prevent Delays

The Fall of 2020 has been the most conducive harvest seasons for soil sampling the Great Lakes region has experienced in several years. When harvest is efficient, fall soil sampling is efficient, resulting in sample volumes that can challenge our laboratory’s daily maximum capacity. While our goal is to keep a consistent turn-time for all samples, it is not always possible if challenges arise in the process. Following these tips can help reduce delays in the delivery of your results.  

  1. Use good quality new or lightly used, heavy duty boxes for shipping samples. The #1 cause of samples being lost is damaged boxes in shipping. Reusing Amazon boxes is discouraged because the cardboard is often too thin to withstand the weight of soil samples.
  2. Packing tape is cheaper than resampling. Be sure to use plenty of good quality packing tape. Make sure to use multiple strips of tape on all box seams including the vertical seam that joins the box together. This is the most damaged part on a box causing loss of samples. If you are reusing boxes be sure to reinforce all previously taped seams and joints.
  3. Full boxes with organized rows of samples hold up best during shipping. Loosely packed boxes stand the greatest chance of being crushed during shipping. Loosely packed samples also stand the greatest risk of losing sticker labels or having handwritten information worn off. Samples that are organized improve the efficiency of the lab process.
  4. If possible, pack entire fields in the same box. If this is not possible please indicate on the outside of the boxes by numbering or labeling with the actual field name. It is fine to have multiple fields in one box but try to avoid spreading multiple fields across multiple boxes. Doing this prevents delaying sample results for multiple fields in the event that one box is lost or delayed in shipping.
  5. Include completed submittal forms that indicate your account number, grower, farm, field, all sample ID’s, and the desired analysis package. Your samples can be processed more efficiently if the submittal forms are in the same box as the samples they represent.
  6. If you are using soil sampling software that allows for electronic submission, be sure to have your information synced, or uploaded prior to the samples being delivered to the lab.

If you have any questions regarding shipping supplies, or sample packaging, please contact your ALGL representative.

October 01, 2020

The Real Value of a Written Plan

Nutrient management is dynamic and challenging, so why write a nutrient management plan if it might change? What is the value of writing down what you might already be doing? All too often when we write a plan, we get to focused on the final product when the value is found in the journey. 

For example, fertilizer rate recommendations are built around crop removal, which is yield multiplied by a crop removal value for the given crop. If the soil test values are below the target level, we apply crop removal plus some additional fertilizer to build the soil fertility. Likewise, if the soil test level is above a high target level, we apply less than crop removal to lower soil test levels. If this seems too simple to even write down, let alone put into a nutrient management plan, you need to take a closer look and think through the steps.

Yield goal is a simple concept, but specifically how do you determine a yield goal value to be used in the fertilizer rate calculations? Is that the running average of the past 3 years for the given crop? The last five years with the minimum and maximum yield removed? Is it the field’s APH? Is it the average for the field, the farm, the overall operation? Do you add 5 or 10% to the yield to reflect increased crop potential? Does the crop removal reflect what was removed last year, or what will be removed in the coming year? Is the crop yield averaged across the field or based on calibrated yield maps for last year or the last few years for the given crop? This is only one of many decisions that are being made when determining how much fertilizer to apply.

Writing a plan on how soil fertility is to be managed forces you to think through these fundamental details. While this may only seem to be practical for those producers writing their own plans, this is true for all nutrient management plans. If you are an independent consultant, have you documented how you manage soil fertility for your clients? If you are an ag retailer or cooperative, have you documented how you develop soil fertility recommendations for your customers?

Also keep in mind that this written plan is a living document, it can and will change. The second key value in a written plan is the evolution of the plan. As you implement the plan, situations and challenges will arise that will force you to question the plan. When this happens, document in the plan what occurred, and what the revised direction on the subject is. With this information you can revisit the topic and evaluate if the new direction accurately addressed the challenge or created others.

The ALGL agronomy staff is ready to discuss the various aspects of soil fertility to support you in your development of a nutrient management plan.

October 01, 2020

Is Your Account Up to Date?

With harvest in full swing through much of our region, fall soil sampling is ramping up also. As the number of samples coming into the lab keeps increasing, we want to make sure the data is flowing back to our customers as quickly and efficiently as possible.

This past summer, ALGL agronomists were not able to make the in-person visits that we traditionally do. The purpose of these visits is to make sure that we are providing the best possible service for our customers. It also gives us the opportunity to address any changes that may impact the delivery of your data. This means making sure that we have up to date contact names, e-mails, proper export data formats, etc.

If you or your company have had any changes recently such as mergers, personnel changes, new software packages, new billing systems, or a change of physical address, please be sure to contact your ALGL representative to make sure the information in your account is up to date. 

September 04, 2020

Celebrating Retirements - Diane Thayer!

We introduced you to Brian and Diane Thayer last Friday. This Friday, we focus on Diane.

Brian and Diane Thayer

Diane started working at A&L Great Lakes after graduating from college in June 1985. She worked as a lab technician in the Ag Lab. She left ALGL in 1987 to stay home with the kids until 1994 and then returned as a part-time lab technician in the Ag Lab. In 1999, she moved to the fertilizer lab and worked part-time until 2008 when she took the full-time role as Fertilizer Chemist.

She said what she likes best about being a part of the team is something she would not have expected when she started as a fertilizer chemist. She was completely terrified of taking phone calls. The best part has been getting to know her clients and being able to help them. She will probably never get a chance to meet many of them in person, but she will miss the interactions. She will also miss the relationships she has with her co-workers. They have laughed, argued and worked together in good times and in bad.

Diane’s favorite memory is meeting her husband Brian. Aside from that, she has fond memories of the ALGL Olympics—a day set aside for the staff to compete in groups. Each team competed in relay games where they did the job that they did not usually do. They were able to see what it was like to do another person’s job in a fun, competitive way.  The day ended with a barbeque and a cornhole tournament.

When she retires at the end of September, Diane plans to spend more time with Brian and her grandchildren. She would also like to do more traveling, take some classes, and do more gardening.

 

Best wishes, Diane. We will miss you!

September 03, 2020

Soil Sampling Unfamiliar Land

Landowners, producers and crop consultants are sometimes faced with the challenge of creating a soil sampling plan for unfamiliar land with limited cropping history, yield data or other pertinent information that might normally be used to build management zones or properly position sampling points.  This update will highlight a few sources of aerial maps, soil data and cropping information available online usually for free or very little cost.

A good starting point would be an aerial image and soil survey layer that is available from WebSoilSurvey.  https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm Users can identify the predominant soil types, descriptions and physical properties, locations and the number of acres of each type within a field.  It can also be used to mark boundaries, measure linear distances and measure field acres within a boundary.

Google earth https://www.google.com/earth/ can be used to view historical satellite images and the colors shown can indicate which crops were grown each year, and might give clues about previous planting dates, reduced crop stands, flood events and prevent plant years.  If the user has general knowledge of local growing conditions in a particular year, such as the severe drought in many areas in 2012, these satellite views can show the crop grown and how various areas performed under harsh conditions.  Try to search for images from a corn year grown under very wet conditions and a corn year grown under very dry conditions and attempt to do the same for soybeans or other crops.

USDA DataGateway https://datagateway.nrcs.usda.gov/GDGOrder.aspx offers a wide range of high-resolution aerial images, climate and precipitation records and lidar elevation maps at the county level.  Many of these are large files that must be ordered and then downloaded through an email link later.  It requires extra time to perform the initial setup, but subsequent orders are quick and easy.

Historical aerial imagery can reveal old building sites, fence lines, ponds, forested areas, abandoned oil wells and other artifacts that might impact current crop production.  Several of these sites are reviewed here.  https://gisgeography.com/free-historical-imagery-viewers/

There are several tools available that can add to your knowledge base about a new and unfamiliar land area, A few hours spent gathering imagery can help you develop a quality soil sampling plan.

« Previous 1 12 13 14 15 16 26 Next »

Relationships. They’re the most important things we help grow.

"We started using A&L Great Lake labs several years ago. We had tried “shopped around” a couple other labs before fully coming on board. The other labs did a fine job; however, a couple key factors why we moved all our business here. Quality, friendly professional staff, fair pricing, location, night drop off, lab software syncs to our software which gain speed and efficiency on our end, winter CCA training, they attend our grower meetings to help promote our goals. Jennifer and I truly feel that A&L Great Lakes Laboratories are not just a service provider but vital partner to the success of our business."

Erich and Jennifer Eller
ForeFront Ag Solutions

READ MORE